Towards Improved CERES Angular Distribution Models

Wenying Su Lusheng Liang
Joseph Corbett Zachary Eitzen
SSAI, Hampton VA

Thanks to Norman Loeb!

Radiance and flux

- CERES measures radiance: $I(\theta_0, \theta, \phi)$
- Relationship between radiance and flux:

$$F(heta_0) = \int_0^{2\pi} \int_0^{\frac{\pi}{2}} I(heta_0, heta, \phi) cos \theta sin \theta d \theta d \phi$$

10/04/11

ERES STM

The road from radiance to flux: angular distribution model

- Sort observed radiances into angular bins over different scene types;
- Integrate radiance over all θ and φ to estimate the anisotropic factor for each scene type;
- Apply anisotropic factor to observed radiance to derive TOA flux;

$$R(\theta_0, \theta, \phi) = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \hat{I}(\theta_0, \theta, \phi) cos\theta sin\theta d\theta d\phi} = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\hat{F}(\theta_0)}$$

$$F(\theta_0) = \frac{\pi I_o(\theta_0, \theta, \phi)}{R(\theta_0, \theta, \phi)}$$

SW ADM for different scene types: Ed2 vs Ed4

Scene	Ed2	Ed4
Clear Land	1° regional monthly ADM using Ahmad&Deering 8-parameter fit;	1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean	Function of wind speed; correction for AOD;	Function of wind speed, AOD and aerosol types (maritime and dust);
Cloud Ocean	Continuous 5-parameter sigmoid function of ln(ft) for three phases;	Update using the Ed2 method;
Cloud Land	Continuous 5-parameter sigmoid function of ln(ft) for three phases; background albedo from clear land;	Update using the Ed2 method;
Fresh Snow	Snow fraction, surface brightness, cloud fraction, cloud optical depth;	1° regional monthly ADM using RossLi 3- para fit for different NDVI for clear-sky;
Perm. Snow	Surface brightness, cloud fraction, cloud optical depth;	Snow index, cloud fraction, cloud optical depth;
Sea-Ice	Ice fraction, surface brightness, cloud fraction, cloud optical depth;	Sea ice index, cloud fraction, cloud optical depth;

10/04/11

LW ADM for different scene types: Ed2 vs Ed4

Scene	Ed2	Ed4
Clear Ocean/Land	Discrete intervals of precip. water, lapse rate, skin temp. for six surface types;	Increase skin temp. intervals from 5 to 10 and add interpolation;
Cloudy Ocean/Land	Third-order polynomial fits between radiance and 'pseudoradiance' for intervals of precip. water, cloud fraction, surface skin temp. and sfc-cld temp. difference;	Interpolation between radiance and 'pseudoradiance' for intervals of precip. water, cloud fraction, surface skin temp. and sfc-cld temp. difference;
Fresh Snow	Discrete intervals of cloud fraction, surface skin temp., and sfc-cld temp. difference;	
Permanent Snow	Discrete intervals of cloud fraction, surface skin temp., and sfc-cld temp. difference;	
Sea-Ice	Discrete intervals of cloud fraction, surface skin temp., and sfc-cld temp. difference;	

10/04/11 CERES STM 4

Predicted radiance vs. observed radiance

$$R(\theta_0, \theta, \phi) = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\hat{F}(\theta_0)} \qquad F(\theta_0) = \frac{\pi I_o(\theta_0, \theta, \phi)}{R(\theta_0, \theta, \phi)}$$

$$F(\theta_0) = \frac{I_o(\theta_0, \theta, \phi)}{\hat{I}(\theta_0, \theta, \phi)} \hat{F}(\theta_0)$$

 Predicted radiances can be used to verify the accuracy of ADM;

Normalize predicted and observed radiance

Observed radiance:

$$I_j^o, \quad j=1,\cdot\cdot\cdot,n$$

Predicted radiance:

$$\hat{I}_j, \quad j=1,\cdot\cdot\cdot,n$$

 $RMS = \sqrt{\frac{1}{n} \sum_{j=1}^{n} \left(\frac{\hat{I}_{j}}{\frac{\hat{I}_{j}}{\hat{I}}} - \frac{I_{j}^{o}}{\overline{I}^{o}}\right)^{2}}$

 $\overline{I^o} = rac{1}{n} \sum_{j=1}^n I_j^o \qquad \overline{\hat{I}} = rac{1}{n} \sum_{j=1}^n \hat{I}_j$

1°

- RMS error between normalized predicted radiance and normalized observed radiance is closely related to the ADM error
- RMS error of 10% (20%) corresponds to flux RMS error of about 2~12 (4~15) Wm⁻² over different scene types based upon theoretical simulations

Angular distribution model over clear land/desert

Scene	Ed2	Ed4
Clear Land	1° regional monthly ADM using Ahmad&Deering 8-parameter fit;	1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean		Function of wind speed, AOD and aerosol types (maritime and dust);
Cloud Ocean		Update using the Ed2 method;
Cloud Land		Update using the Ed2 method;
Fresh Snow		1° regional monthly ADM using RossLi 3- para fit for different NDVI;
Perm. Snow		Snow index, cloud fraction, cloud optical depth;
Sea-Ice	Ice fraction, surface brightness, cloud fraction, cloud optical depth;	Sea ice index, cloud fraction, cloud optical depth;

10/04/11

A simpler BRDF model for clear-sky land: Modified RossLi

- B1 estimates the directional reflectance of a flat surface with randomly distributed and oriented protrusions;
- B2 approximates the radiative transfer within a vegetation canopy, accounts for the hot spot effect;

$$\rho(\mu_0,\mu,\phi) = k_0 + k_1 \cdot B_1(\mu_0,\mu,\phi) + k_2 \cdot B_2(\mu_0,\mu,\phi)$$
 from Maignan et al., 2004

10/04/11 CERES STIVI 8

Modified RossLi BRDF model reduces the RMS error

Modified RossLi BRDF model reduces the RMS error

SW angular distribution model over clear ocean

Scene	Ed2	Ed4
Clear Land		1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean	Function of wind speed; correction for AOD;	Function of wind speed, AOD and aerosol types (maritime and dust);
Cloud Ocean		Update using the Ed2 method;
Cloud Land		Update using the Ed2 method;
Fresh Snow		1° regional monthly ADM using RossLi 3- para fit for different NDVI for clear-sky;
Perm. Snow		Snow index, cloud fraction, cloud optical depth;
Sea-Ice	Ice fraction, surface brightness, cloud fraction, cloud optical depth;	Sea ice index, cloud fraction, cloud optical depth;

10/04/11

Clear-sky angular distribution model over ocean

- Clear-sky ADM over ocean R(w, θ_0 , θ , ϕ);
- Aerosol optical depth was not directly considered, ADM dependence on aerosol optical depth is implicitly accounted for by theoretical adjustment.

New clear-sky ADM accounts for aerosol loading and type

- Develop a two-channel (0.64 and 0.86 µm) AOD retrieval using maritime and dust aerosols;
- Stratify AOD into bins (2 for maritime and 3 for dust);
- Build ADM for each AOD bin and type separately (5 ADMs).

New clear-sky ocean ADM increases the instantaneous TOA flux by 0.5 Wm⁻²

Flux differences (new-old) using all RAP data (03/2000 to 05/2005)

10/04/11

 (Wm^{-2})

1.5

1.0

0.5

0.0

-0.5

-1.0

Angular distribution model over cloudy ocean

Scene	Ed2	Ed4
Clear Land		1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean		Function of wind speed, AOD and aerosol types (maritime and dust);
Cloud Ocean	Continuous 5-parameter sigmoid function of ln(ft) for three phases;	Update using the Ed2 method;
Cloud Land		Update using the Ed2 method;
Fresh Snow		1° regional monthly ADM using RossLi 3- para fit for different NDVI;
Perm. Snow		Snow index, cloud fraction, cloud optical depth;
Sea-Ice	Ice fraction, surface brightness, cloud fraction, cloud optical depth;	Sea ice index, cloud fraction, cloud optical depth;

10/04/11

Angular distribution model over cloudy ocean

- For glint angle > 20°, or glint angle < 20° and ln(ft) > 6:
 - Average instantaneous radiances into 750 intervals of ln(ft);
 - Apply a five-parameter sigmoidal fit to mean radiance and ln(ft);

$$I = I_0 + \frac{a}{[1 + e^{-(x - x_0)/b}]^c}$$

- For glint angle < 20° and ln(ft) < 6:
 - Calculate mean radiance for 6 wind speed bins and 4 ln(ft) bins;
 - Use mean radiance to build ADM

A case of sigmoidal fit over ocean

Do we need to consider other variables to define the ADM?

- Current ADM considers cloud optical depth, cloud fraction, and cloud phase;
- Are there any other variables that we need to consider?
 - Cloud top pressure
 - Cloud droplet size
 - Standard deviation of cloud optical depth
 - Precipitable water

Sigmoidal fit is not sensitive to other variables

RMS error between normalized predicted and measured radiance

Angular distribution model over cloudy land/desert

Scene	Ed2	Ed4
Clear Land		1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean		Function of wind speed, AOD and aerosol types (maritime and dust);
Cloud Ocean		Update using the Ed2 method;
Cloud Land	Continuous 5-parameter sigmoid function of ln(ft) for three phases; background albedo from clear land;	Update using the Ed2 method;
Fresh Snow		1° regional monthly ADM using RossLi 3- para fit for different NDVI;
Perm. Snow		Snow index, cloud fraction, cloud optical depth;
Sea-Ice		Sea ice index, cloud fraction, cloud optical depth;

10/04/11

Angular distribution model over cloudy land/desert

Derive cloudy area contribution from observed radiance:

$$fI^{cld}(\mu_0, \mu, \phi) = I(\mu_0, \mu, \phi) - (1 - f) \frac{\mu_0 E_0}{\pi} \rho^{clr}(\mu_0, \mu, \phi) - f \frac{\mu_0 E_0}{\pi} \left[\rho^{clr}(\mu_0, \mu, \phi) e^{\frac{-\tau}{\mu_0}} e^{\frac{-\tau}{\mu}} + \overline{\alpha}^{clr} \frac{t^{cld}(\tau, \mu_0) t^{cld}(\tau, \mu)}{1 - \overline{\alpha}^{clr} \overline{\alpha}^{cld}(\tau)} \right]$$

- Average instantaneous fI^{cld} into 375 intervals of ln(ft) for each angular bin (5°) for three cloud phases;
- Apply a five-parameter sigmoidal fit to mean fI^{cld} and ln(ft);

$$I = I_0 + \frac{a}{[1 + e^{-(x - x_0)/b}]^c}$$

10/04/11

A case of sigmoidal fit over land

RMS error between normalized predicted and measured radiance

RMS error for Ed2 200010: mean RMS=12.7%

SW angular distribution model over permanent snow

Scene	Ed2	Ed4
Clear Land		1° regional monthly ADM using modified RossLi 3-parameter fit;
Clear Ocean		
Cloud Ocean		
Cloud Land		
Fresh Snow		1° regional monthly ADM using RossLi 3- para fit for different NDVI for clear-sky;
Perm. Snow	Surface brightness, cloud fraction, cloud optical depth;	Snow index, cloud fraction, cloud optical depth;
Sea-Ice	Ice fraction, surface brightness, cloud fraction, cloud optical depth;	Sea ice index, cloud fraction, cloud optical depth;

10/04/11 CERES STM 25

Why reflectance and albedo are sensitive to solar azimuth?

- Use Dec. clear-sky data over south pole (88~895, -93~-101W);
- Angular bins: SZA [65~70]; VZA [55~70]; RAZ [60~70];

26

Permanent snow surface is not flat: sastrugi

- Sastrugi: An irregularity formed by the wind on a snow plain. "Snow wave" is not completely descriptive, as the sastrugi has often a fantastic shape unlike the ordinary conception of a wave (from Scott's Last Expedition);
- Sastrugi generally aligned parallel to prevailing wind direction, but sometimes two or three sets of sastrugi crossing each other.

Regional clear-sky flux bias and the orientation of sastrugi

- Flux bias: $F(\theta_v) F(\theta_v < 20^\circ)$
- Difference between most frequent wind direction and solar azimuth angle
- Positive flux bias when wind direction is parallel to solar azimuth and negative flux bias when wind direction is perpendicular to solar azimuth

LW angular distribution model over clear ocean/land

Scene	Ed2	Ed4
Clear Ocean/Land	Discrete intervals of precip. Water (4), lapse rate (4), skin temp. (5) for six surface types;	Increase skin temp. intervals from 5 to 10 and add interpolation;
Cloudy Ocean/Land	Third-order polynomial fits between radiance and 'pseudoradiance' for intervals of precip. water, cloud fraction, surface skin temp. and sfc-cld temp. difference;	Interpolation between radiance and 'pseudoradiance' for intervals of precip. water, cloud fraction, surface skin temp. and sfc-cld temp. difference;
Fresh Snow		
Permanent Snow		
Sea-Ice		

10/04/11 CERES STM 29

RMS error between normalized predicted and measured radiance: July 2000 daytime (Ed2)

High errors
over oceans
near Ts=290K
boundary

Increase surface temperature bins + interpolation reduces the RMS error: July 2000 daytime

More talks on ADM

Co-I talk by Joe Corbett on Thursday
"The Effect of Sastrugi on TOA Albedos from CERES"

Working group talk by Zach Eitzen "Progress in clear-sky Longwave ADMs"

Working group talk by Lusheng Liang
"Impact of Aerosol Type on CERES Clear-sky Shortwave
ADM over Ocean"

Schedule

- Edition 4 SSF?
- Deliver Edition 4 ADM a year after Edition 4 SSF in production (possible but optimistic goal)!

Summary

- Thorough evaluation of SW cloudy-sky ADM indicates that the five-parameter sigmoidal fit is sufficient;
- Aerosol optical depth/type classified clear ocean ADMs reduce the RMS error between predicted and observed radiances from 10.7% to 8.4%;
- Uncertainty in TOA SW fluxes from sastrugi over Antarctic:
 - Monthly-mean: clear-sky < 5 Wm⁻²; all-sky < 2 Wm⁻²;
 - Annual-mean all-sky ~0.0 Wm⁻²;
- For LW clear-sky over ocean/land, increasing surface temperature bins and adding interpolation reduce the RMS error between normalized predicted and observed radiances from 1.8% to 1.4%.